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Introduction: Event generators

Ambitions:

◦ Fully differential, fully exclusive theory
tools to produce “test data”.

◦ Way to imprint knowledge of all data onto
theory calculations.

◦ Efficient tools to meet experimental needs.

The complexity of the task make event generators intricate combinations
of different aspects of particle scattering.

Precision QCD predictions are crucial for LHC, even more so for HL-LHC,
FCC & cousins, and also EIC.
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Precision perturbative QCD in event generators

Why bother?

◦ Best possible pQCD prediction
⇒ Less wrong collider-specific non-perturbative fits

⇒ More universal data description
⇒ Predictive power

◦ Large pQCD higher order corrections
⇒ Major part of LHC systematics

Precision pQCD is produced by matching/merging fixed-order calculations
to parton showers
Parton Showers (PS) generate radiation clouds around primary high-energy particles, i.e.
give an initial boost in particle multiplicity
⇒ One of the dominant uncertainties for HEP at colliders!
⇒ Progress needed, workshop needed!
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Taming the accuracy of event generators workshop

Context: Matching1 and merging2 fields appear to be in a consolidation
phase. Recently, much recent in precision all-order parton showers.

1 combining process-specific higher-order calculations with parton shower and event generator
2 combining multiple higher-order calculations with each other and with the parton shower

Bring different groups together and
discuss
◦ experimental needs
◦ perturbative accuracy
◦ computing performance
…and make progress together.

Slides and videos are available at
https://indico.cern.ch/event/876082/
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Reality check

◦ LHC craves multijet merged NLO
calculations!

◦ (HL)-LHC will need even more
precision multijets.

◦ Computing is a severe issue!

No longer true that detector
simulation is the only bottleneck!

More precise calculations also need
to be more efficient, if they should
be adopted.

Dominant uncertainties: Parton
shower and matching scheme.

CHRISTIAN GÜTSCHOW

FUTURE EXPERIMENTAL NEEDS IN EVENT SIMULATION

(HL-)LHC: a jet factory
Ü pretty much everything the detector sees is a jet to start with

Ü excellent understanding of jet modelling and associated theoretical uncertainties is vital

Ü ‘sit back and relax’ for data-statistical/experimental uncertainties to drop – except theory
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(a) Re-interpreting the final-state configuration
of the fixed-order calculation as having origi-
nated from a parton cascade [28]. This proce-
dure is called clustering, and the representa-
tions of the final-state configuration in terms
of parton branchings are called parton-shower
histories.

(b) Choosing appropriate scales for evaluating the
strong coupling in each branching of this cas-
cade, thereby resumming higher-order correc-
tions to soft-gluon radiation [57, 58]. This pro-
cedure is called αs-reweighting.

(c) Multiplying by appropriate Sudakov factors,
representing the resummed unresolved real
and virtual corrections [30]. This is called Su-
dakov reweighting, and is usually implemented
by trial showers [31].

Step 2 in this algorithm turns the inclusive pp→ Z + nj
predictions into exclusive results, which describe the pro-
duction of exactly n jets according to the jet criterion.1

They can then be added to obtain the merged result.
Care has to be taken that the result for the highest
jet multiplicity remain inclusive over additional radia-
tion which is softer than the softest existing jet. This is
known as the highest multiplicity treatment.

A. General Aspects of the Simulation

Technically, the merging algorithm described above in-
volves multiple stages:

1. The computation of fixed-order results

2. The clustering and αs reweighting

3. The parton shower and Sudakov reweighting

In the past, different implementations have combined
these steps in different ways. Traditionally, the Sherpa
event generator performs the jet clustering during the
computation of the fixed-order result and optimizes the
Monte-Carlo integrator based on the hard matrix ele-
ment, including αs reweighting. The Pythia event gen-
erator relies on external matrix element providers [60] to
compute the perturbative inputs, and therefore a natural
separation of Step 1 from the remainder of the calcula-
tion occurs. We argue that this also provides the more
natural separation for improved compute performance.
The reasons are twofold:

1. The parton shower and the clustering are proba-
bilistic, in the sense that the number of particles

1 Note that the jet criterion need not correspond to an experimen-
tally relevant jet algorithm. It may be a purely theoretical con-
struct as long as the infrared limits are properly identified [59].
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FIG. 1: Scaling of computation time (in CPU hours per 1
million events) for parton-level and particle-level event gen-
eration in multi-jet merged computations of W++jets at the
LHC. We limit the number of quarks to ≤ 6 in W+ + 6, 7jet
and to ≤ 4 in W+ + 8, 9jet final states. Green squares in-
dicate results using the standard clustering procedure, while
blue circles indicate results obtained from the winner-takes-
all (WTA) approach as the number of jets exceeds six. See
Sec. II C for details.

produced in the shower, or the path chosen in the
clustering are not known a priori. In contrast, the
fixed-order perturbative calculations used as an in-
put to the parton shower operate at fixed particle
multiplicity, and always evaluate the same Feyn-
man diagrams. By separating these two domains,
we divide the program into two components with
different program flow.

2. The computation of fixed-order results is very cum-
bersome at high multiplicity, even when making
use of recursion relations. The corresponding un-
weighting efficiencies are usually very small. By
comparison, both the parton shower and the jet
clustering procedure are fast and consume signifi-
cantly less memory. This is exemplified in Fig. 1.
Separating the two domains and storing results of
the fixed-order calculation into intermediate event
files allows to reuse the computationally most ex-
pensive parts of the simulation for calculations with
different parton-shower or hadronization parame-
ters.

In the following we will discuss the problems related to
fixed-order calculations and parton-shower simulations
on HPC architectures in more detail, and present solu-
tions that allow us to carry out simulations relevant for
the high-luminosity LHC.

[JHEP 05 (2018) 077]

[Phys. Rev. D 100 (2019) 014024]
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CHRISTIAN GÜTSCHOW

FUTURE EXPERIMENTAL NEEDS IN EVENT SIMULATION

Revised computing model

Ü baseline: assume Run-2 performance (compromise on physics quality)

Ü conservative: achieve better physics quality for same CPU time / event as in Run-2

Ü aggressive: CPU time / event halved, generate 30% (simulate 10%) fewer events
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Progress on next-to-leading log-accurate parton showers
Goal: Highly differential all-order resummation tools for large classes of
observables for which NLL determined by emissions of large p⊥ hierarchy.

Long-standing wish. Much progress in last few years!

◦ Eikonal structure of single-emission and color
coherence must be guaranteed.
◦ Dominant concern: Showers implement on-
shell momentum conservation, but kinematics
of subsequent emissions should not distort
previous emissions!

⇒ Phase-space mapping (recoil strategy) large
focus.

Efforts concentrated at lepton colliders.
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Progress on next-to-leading log-accurate parton showers
Summary

AO PS can reach NLL accuracy for many shape observables
provided that the recoil scheme guarantees that a soft emission
does not disturb the kinematic of other emissions;

Preserving the pT or the dot product meet the requirement but
overpopulates the non-log enhanced region of the phase space
when it comes to FSR;

An implementation of the correct phase space factorization
mitigates the problem: is it possible to have it in general at least
for FSR?

What else can we do when HO ME are not available?

Can we tune αs? αISR
s 6= αFSR

s ?

AO PS cannot reproduce non global logs since the azimuth
averaging washes away correlations. Can we build a consistent
AO PS? [Forshaw, Holguin, Plätzer ’20]

Silvia Ferrario Ravasio — June 29th , 2020 Recoil schemes in AO PS 16/16

Systematic assessment of parton shower accuracy

I Pythia 8 deviates from NLL, while PanLocal 0 < � < 1 and PanGlobal
0 ≤ � < 1 correctly reproduces global observables, non-global
observables and multiplicities.
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Frédéric Dreyer 18/19

ongoing discussion:

◦ define accuracy by defining set of
◦ observables;
◦ find a neutral baseline;
◦ define uncertainty budget.
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NLL is all about kinematics!
Real precision: %-level checks!

Azimuthal modulation important!
7 / 17



Progress on NLO parton showers

Goal: Fully differential all-order tool to produce singular parts of QCD
emission pattern at O(α2

s) for any scale hierarchy.

Initiated already in 1980’s, but reinvigorated in light of NNLO progress in
recent years.

◦ Fully differential O(α2
s)-calculation in expo-

nent of Sudakov form factor

◦ Explicit real-virtual and double-real corrections

◦ Subtleties: Distinction between ordered and
unordered emissions, azimuthal correlations, re-
lation to and usefulness of MS-type factorization
schemes.

Efforts mostly at lepton colliders, partial
hadron collider results.
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Progress on NLO parton showers

Getting There: Direct 2→4 Branchings

Peter Skands 11Monash U.

๏Redefine the shower resolution scale  
•For unordered 2→4 paths: scale of 2nd branching defines resolution 

๏ The intermediate on-shell 3-parton state is merely a convenient stepping 
stone in phase space ⇨ integrate out

Li & PS: PLB771 (2017) 59 
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Figure 1: Illustration of scales and Sudakov factors in strongly

ordered (ACD), smoothly (un)ordered (ACB), and direct 2 →

4 (AB) branching processes, as a function of the number of

emitted partons, n.

parts of phase space, they may be developed as sep-

arate algorithms, provided they use the same set of

antenna functions. (Full second-order precision is

of course only achieved when both components are

included.) Given that a proof-of-concept study of

NLO corrections to ∆2→3 already exists [13], we

focus in the following sections on the previously

missing piece: explicit construction of the 2 → 4

component.

We round off the discussion of the Sudakov form

factors by illustrating the scale evolutions for 2 →

3 and 2 → 4 showers in fig. 1. An ordered se-

quence of 2→ 3 branchings is represented by path

A → C → D and the corresponding combined Su-

dakov factor is ∆2→3(Q2
A,Q

2
C)∆3→4(Q2

C ,Q
2
D) . The

2 → 4 shower explores more phase space by in-

cluding path A → B which lives in unordered

phase space compared with the ordinary strongly-

ordered shower. Path A→ C → B shows the possi-

ble branching in “smoothly-ordered showers” [22]

which can also access unordered phase space.

However, for smooth ordering the combined Su-

dakov factor ∆2→3(Q2
A,Q

2
C)∆3→4(Q′ 2

C ,Q
2
B) is used

where Q′C > QB represents the restart scale of

the smooth-ordering shower. As pointed out in

[13], the ∆2→3(Q2
A,Q

2
C) factor implies an LL sen-

sitivity to the intermediate scale QC ; an undesired

byproduct of the use of iterated on-shell 2 → 3

phase-space factorisations. The direct 2 → 4

shower avoids this by using the exact Sudakov fac-

tor ∆2→4(Q2
A,Q

2
B) in which QC only appears im-

plicitly as an auxiliary integration variable.

Finally, let us consider what happens in the

vicinity of the boundary between what we label

as ordered and unordered emissions, i.e., when

there is no “strong” ordering between two suc-

cessive (colour-connected) emissions. This is par-

ticularly relevant for the double-unresolved limits

characterised by a single unresolved scale. The

boundary can be approached either from the un-

ordered region, or from the ordered one, and in

general both regions will contribute to the double-

unresolved limits. In the unordered region, the

2 → 4 antenna functions are used directly, cap-

turing both the single- and double-unresolved (soft

and collinear) limits of QCD [19]. They are also in

our formalism intrinsically characterised by a sin-

gle scale, as discussed above. In the ordered re-

gion, the product of 2 → 3 antennae is modulated

by the correction factors R2→4, to reproduce the full

2 → 4 functions, and the two separate scales co-

incide as we approach the boundary, interpolating

smoothly between the single-unresolved (iterated,

strongly ordered) and double-unresolved (single-

scale) limits.

3. Explicit Construction of the 2→4 Shower

For a branching 1 2 → 3 4 5 6 we define the

resolution scale as Q4 = 2 min(p345
⊥ , p

456
⊥ ), with

(p
i jk
⊥ )2 = si j s jk/si jk. We let the direct 2 → 4

shower populate all configurations for which the

clustering corresponding to Q4 is unordered. (Con-

versely, iterated 2 → 3 splittings populate those

configurations for which the clustering correspond-

ing to Q4 is ordered, with the correction factor

R2→4 reducing to R2→4 → a4/(a3a′3) when there is

only a single ordered path, and, for gluon neigh-

bours, the neighbour with the smaller resolution

scale used to define a4.)

We partition the direct 2 → 4 phase space into

two sectors: sector A with condition p345
⊥ < p456

⊥

and sector B with p345
⊥ > p456

⊥ . For each sector,

branching scales for 2→ 4 emissions are generated

5

New: Direct 2→4 Sudakov 
(no on-shell intermediate state)

Using the same notation as in eq. (2) and with Q3

denoting a 3-parton resolution scale, the second-

order 2→ 3 Sudakov factor is:

∆2→3(Q2
0,Q

2) = exp

[
−

∫ Q2
0

Q2

dQ2
3

∫ ζ+(Q3)

ζ−(Q3)
dζ

×
|J|

16π2m2
a0

3

(
1 +

a1
3

a0
3

+
∑

s∈a,b

∫

ord
dΦs

ant R2→4 s′3

+

∫ Q2
0

Q2
3

dQ̃2
3

∫ ζ+(Q̃3)

ζ−(Q̃3)

dζ̃
|J̃|

16π2m2
a0

3̃

)]
, (9)

where the integral over a0
3̃
≡ a0

3(Q̃3, ζ̃) is generated

by the ∆(Q2
0,Q

2) term in the second line of eq. (7),

and |J̃| ≡ |J(Q̃, ζ̃)|. The functional form of Q̃ must

be the same as that of Q while the form of ζ̃ can in

principle be chosen independently of that of ζ.

The 2 → 4 Sudakov factor is defined by the last

term in eq. (7). However since the δ(Q2 − Q2(Φ4))

function projects out the 4-parton resolution scale

in this case, we interchange the order of the nested

phase-space integrations, utilising that

∫ Q2
0

0
dQ2

3

∫ Q2
0

Q2

dQ2
4 Θ(Q2

4 − Q2
3) f (Q2

3,Q
2
4) =

∫ Q2
0

Q2

dQ2
4

∫ Q2
4

0
dQ2

3 f (Q2
3,Q

2
4) , (10)

for a generic integrand, f , with the result:

∆2→4(Q2
0,Q

2) = exp
[
−

∑

s∈a,b

∫ Q2
0

Q2

dQ2
4

∫ Q2
4

0
dQ2

3

∫ ζ4+

ζ4−

dζ4

∫ ζ3+

ζ3−

dζ3
|J3J4|

(16π2)2m2m2
s

∫ 2π

0

dφ4

2π
R2→4s3s′3

]
,

(11)

where the nested antenna phase spaces of eq. (7),

dΦant dΦs
ant have now been expressed in terms

of shower variables, with an associated combined

Jacobian |J3J4|. In section 3, we show how to

construct an explicit shower algorithm based on

eq. (11) while we refer to [13] for a proof of con-

cept of an NLO-corrected 2 → 3 shower based on

a formula that only differs from eq. (9) by finite

terms.

Let us now turn our attention to whether the inte-

grands in each of the Sudakov form factors, eqs. (9)

and (11), are well-defined and finite. For ∆2→3,

this amounts to showing whether the singularities

present in the a1
3 term are fully cancelled by those

coming from the integral over R2→4s′3. We start

from the observation that the single-unresolved

limits of the 4-parton antenna functions are fully

captured by the LL 2 → 3 ones (up to angular

terms which cancel upon integration over the un-

resolved region [19]), hence

a4 → a3a′3 + b3b′3 + ang. , (12)

which in turn implies that R2→4 → 1 in any single-

unresolved limit (modulo the angular terms), hence

the pole structure of the R2→4s′3 integrals is the

same as that of the unmodified antenna functions,

Poles

{∫

ord

dΦs
ant R2→4 s′3

}
= Poles

{∫
dΦs

ant s′3

}
,

(13)

where the integration region can be extended to all

of phase space since the ordered region by defini-

tion includes all single-unresolved limits3, and use

of the angular-averaged R2→4 is justified since s′3
itself does not depend on the azimuth angle. The

sum of two sub-antenna integrals like the ones on

the right-hand side of eq. (13) precisely cancels

the singularities of the corresponding one-loop an-

tenna functions, a1
3 [19], thus establishing that the

integrand in eq. (9) is free of poles in ε.

In the unordered part of phase space, singular-

ities only occur when both Q4 → 0 & Q3 → 0

which corresponds to part of the double-unresolved

contribution. In the shower context, these singular-

ities are controlled via the assumption of unitarity.

Thus, the 2 → 4 Sudakov factor is also well de-

fined. Since the NLO 2 → 3 and 2 → 4 contri-

butions are therefore both free of explicit poles in

ε, and since they generate corrections in different

3This is true for all evolution variables considered in Vin-

cia and, more generally, for any evolution variable that defines

an infrared safe observable. Without this property, an explicit

regularisation has to be introduced, see e.g., the case of energy

ordering considered in [13].

4

Interchange order of integrations 
Q2→3 ↔ Q3→4

Originally, the 3→4 phase space 
is nested inside the 2→3 one

Now the 
intermediate 

(unordered) scale is 
integrated over for 

each value of Q4

Unordered phase space: Q4 > Q3

Jacobian for dLIPS → dQ3dQ4dζ3dζ4 2→4 MEC

Product of 
2→3 functions

Note: this is not a very pedagogical exposition; will try to come up with a better one

Leading color fully differential soft evolution at NLO

[Dulat,Prestel,SH] arXiv:1805.03757
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I Impact on 2 → 3 and 3 → 4 Durham jet rate at LEP I

I Uncertainty bands no longer just estimates
but perturbative QCD predictions for the first time

I Fair agreement with CMW scheme

ongoing discussions:
◦ Relation to NLL efforts, and to NNLO subtraction.
◦ Accepting factorization schemes with large negative O(α2

s)-corrections
◦ Defining suitable testing observables.
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Matching event generators to precision fixed-order

Goal: Combine precision fixed-order calculations with event generators.
Help with next leap in fixed-order precision, i.e. NNLO event generation.

NLO+PS matched and (N)LO multijet merged calculations are a must for SM
background predictions. NNLO+PS prototypes available since 2013.

◦ For precision SM measurements (MW , p⊥,Z)
NLO needs to be replaced by NNLO

◦ Provide framework for NNLO event generation

◦ Subtleties: Not completely differential yet.
Impact of shower on inclusive distributions in
fiducial phase-space.

NNLO+PS available for DIS and several
[pp] →[color singlet] processes.
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Progress fixed-order pQCD+PS matching
final UN

3
LOPS cross section

◦ unitarization gives a “short-cut” to higher-order matching

◦ usefulness is in the eye of the beholder (helpful for arXiv:1405.3607 study)

21 / 22

MiNNLOPS: Drell-Yan

dσ/bin [pb] pp→ℓ+ℓ-@LHC 13 TeV

MiNNLOPS (lhe)
MiNNLOPS SpaceShower:dipoleRecoil OFF

MiNNLOPS SpaceShower:dipoleRecoil ON
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Impact of shower recoil scheme

- shower suppresses configuration at large |yZ |

- due to the PYTHIA8 global recoil scheme

- effect is less pronounced if local recoil for
emissions off initial-final colour dipoles

- these effects are formally subleading, but visible

13 / 17

ongoing discussion:

◦ What does “differential” mean? Can
◦ NNLO+PS be fully differential?
◦ Relation to/requirements from higher-
◦ precision showers
◦ historical baggage from NLO+PS starting
◦ point?

Changing the resolution parameter: qT

Using qT as 0-jet resolution parameter allows for target N3LLqT +NNLO0 accuracy

I RadISH performs qT resummation up
to N3LL directly in qT space

Bizon et al. arXiv:1905.05171

I Its internal structure requiring Monte
Carlo generation of unphysical events
makes it hard to directly link.

I We proceeded building interpolating
grids with Chebyshev polynomials and
calling these interpolating grids from
Geneva.

I Usage of Chebyshev polynomials is key
in easily obtaining spectrum from
cumulant.
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I Results are in good agreement with dedicated RadISH+MATRIX N3LL+NNLO0

control runs.
I Shower interface different from T0 case. Now the shower affects the N3LL accuracy,

numerical effects seem to be contained.
I Exploring possibility of changing also 1/2-jet resolution variable to simplify interface

with the shower. Simone Alioli | GENEVA | CERN TH WS 1/7/2020 | page 18

N3LO+PS possible - but useful?

Precision physics: %-level discussions!

Add obervable-specific improved resummation.
N3LL p⊥,Z possible! 11 / 17



Subleading color, non-global and super-leading logs

Context: Traditional PS are spin-averaged and “leading-color”. Sev-
eral methods/codes to correct the color-factors of emission patterns ex-
ist. Non-global logarithms can be resummed by PS-inspired methods.

Color-correct no-emission pattern requires amplitude-level information.

→ Several proposals for completely new
→ PS formalisms at amplitude level
→ Embed QM interference at all orders.
→ Enable description of Glauber phases,
→ non-global logarithms and
→ factorization-breaking effects.

DEDUCTOR most advanced public code. Other
codes in the making.

12 / 17

https://inspirehep.net/literature/555905


Progress on amplitude-level evolution

NLL MC: top production with rapidity gap 

• Performed NLL resummation for a variety of observables 
• Gaps between jets in e+e− and pp, photon isolation cones, … 
• Most recently: central jet veto in top production 

• massive partons, radiation from decay 
• Shower as flexible Python library ngl_resum, processes tree-level 

LHEF for LO Hk 

• Computes NLL, as well as NLO and NNLO logs
16

Balsiger, TB, Ferroglia, 2006.00014
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Figure 9. Same as Figure 8, except that the multiplicative matching scheme was adopted.

modeling of the initial-state radiation is the most important e↵ect. For this reason, it is

not clear to us if a comparison to the ATLAS data provides a su�ciently stringent test of

the description of soft radiation from massive quarks in a parton shower.

One observes that the additive matching scheme works well for the gap region |y| < 0.8

and actually mildly improves the agreement of central value with the data. However, for the

case in which the gap region is |y| < 2.1, the predictions obtained with additive matching

become unphysical for small values of Q0. This is not surprising, since the higher-order

emissions are enhanced by factors of the gap size �y. If these rapidity logarithms become

larger, they must be resummed. The formalism to carry out this resummation exists [7, 8]

but we do not implement it in the present work.

The multiplicative matching leads to better results since the matched gap fraction

correctly vanishes for Q0 ! 0, as the resummed result does. Predictions obtained by

means of multiplicative matching are shown in Figure 9, which shows that they are in good

agreement with the experimental data, within the large scale uncertainty bands. To reduce

these, it would be important to go to higher logarithmic accuracy, or to at least include

higher-order corrections to the hard and soft functions, as it was done in the massless case

[10].

In order to compare predictions to the Run I ATLAS measurement [15], all calculations

were carried out at
p
s = 7TeV. For the tree-level top production process at

p
s = 13TeV,

one finds that the average partonic center-of-mass energy is Q ⇡ 550GeV, which translates

into Q1 ⇡ 170GeV, only 20GeV higher than at 7TeV. Consequently, we conclude that

the result for the gap fraction at
p
s = 13TeV would be quite similar to the ones at Run I.

6 Conclusion

In this paper, we have developed the necessary formalism to carry out the resummation

of non-global logarithms for processes involving massive quarks. More specifically, we dis-

cussed how the parton shower approach needs to be modified to go beyond the high-energy

– 22 –
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ongoing discussion:

◦ How do different formalisms compare to
◦ each other and to CSS or SCET?
◦ Define benchmark comparisons
◦ Status of implementation and potential
◦ for large-scale event generation

Collinear Subtractions

where ni = qi/(S · qi), n = k/(S · k) and S is any time-like four-vector, which we choose to

satisfy S2 = 1. The soft divergence is now isolated from the eikonal term, which is singular

only in the collinear limits ni,j · n ! 0. The collinear divergences can be subtracted. We

want the ordering variable to become independent of the other parton’s direction in the

collinear limit, such that the entire collinear divergence can be moved into a jet factor that

is trivial in colour space.

We choose to re-write the virtual evolution as lnVab = lnWab + lnKab, where

lnWab =
↵s

2⇡

X

i<j

Tg
i · T

g
j

Z b2

a2

dq2

q2

Z
d3k

2E

1

⇡ (S · k)2

 
K2(pi, pj ; k)

ni · nj

ni · n n · nj
�(q2 �K2(pi, pj ; k)) ✓ij(k)

�
K2(pi; k)

ni · n
�(q2 �K2(pi; k))✓i(k)�

K2(pj ; k)

nj · n
�(q2 �K2(pj ; k))✓j(k)

!
, (2.34)

and colour conservation can now be used to obtain

lnKab =
↵s

2⇡

X

i

(Tg
i )

2

Z b2

a2

dq2

q2

Z
d3k

2E

2

⇡ (S · k)2
K2(pi; k)

ni · n
�
�
q2 �K2(pi; k)

�
✓i(k) . (2.35)

This factor contains the ordering variable in terms of a single emitter direction, which is

the limiting case of the dipole-type definition in each collinear limit, i.e. K2(pi, pj , k) !

K2(pi; k) as ni · n ! 0. Given the Lorentz invariance of the virtual evolution and the

integration measure we can choose S = (1,~0).

In the case of energy ordering, we obtain the following for the subtracted soft evolution:

lnWab

���
energy

=
↵s

⇡

X

i<j

Tg
i · T

g
j

Z b

a

dE

E

Z
d⌦

4⇡

✓
ni · nj � ni · n� nj · n

ni · n n · nj

◆

=
↵s

⇡

X

i<j

Tg
i · T

g
j

Z b

a

dE

E
ln

ni · nj

2
(2.36)

where the angular integral can be performed using the same integral that gives rise to

angular ordering. And for the collinearly divergent factor:

lnKab

���
energy

=
↵s

⇡

X

i

(Tg
i )

2

Z b

a

dE

E

Z
d⌦

4⇡

2

ni · n
. (2.37)

There is no need for ✓ij since this simply enforces that the emitted gluon should have energy

smaller than
q

1

2
pi · pj in the ij zero momentum frame, which is automatically satisfied

since a < E < b.

Now let us consider the case of transverse momentum ordering. This can be imple-

mented through

K2(pi, pj ; k) = (k(ij)
?

)2 =
2 pi · k k · pj

pi · pj
, (2.38)

– 13 –
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†

8)scale

hQ|
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3 p3?

Figure 6. A diagram illustrating factorised parton evolution. Red dashed lines represent the
emission of soft gluons and blue dotted lines represent collinear emissions. Circles represent the
hard scale from which the subsequent evolution proceeds. Loops (Sudakov factors) have not been
drawn.

where we have used C̃1 ⌘ C1 ⌘ C1 as it only acts on hard legs. We have also used the

commutators [Va,b(Vcol

a,b)
�1,Vcol

c,d] ' 0 and [Va,b(Vcol

a,b)
�1,Cj ] ' 0, derived in the previous

section, and Vc,a = Vc,bVb,a. Notice in the above expressions the theta functions present

in C̃1 and Vtcol

q1?,Q are always unity on hard legs as the ordering guarantees their argument

is satisfied. We will now show that if (3.26) is true for An, it is also true for An+1.

We begin by noting that from the Markovian way our algorithm evolves, we can write

An+1 ⌘ Ân(µ, q1?) where Ân(µ, q1?) is computed using our algorithm (as described in

(2.2)) however with the evolution initiated by Ĥ(q1?) = D1Vq1?,QH(Q)V†

q1?,QD
†

1
and

with the parton momentum indexed as 2, 3, 4, ... . From this we can use (3.26) to write

TrAn+1(µ) = Tr Ân(µ, q1?) =
nX

m=0

Tr
⇣

ˆtCol
†

m(µ, q1?) � ˆtColm(µ, q1?)Â
soft

n�m(µ, q1?)
⌘
,

(3.28)

where Âsoft
n�m(µ, q1?) are generated by the same algorithm as Asoft

n�m(µ) however using

Ĥ(q1?) as the initial condition. ˆtColm(µ, q1?) are generated using the iterative relation

in (3.24) but with an initial condition ˆtCol0(q?, q1?) = Vtcol
q?,q1? . Next we split apart

Ĥ(q1?) as

Ĥ(q1?) =S1V
tcol

q1?,QV
soft

q1?,QH(Q)Vsoft †

q1?,QV
tcol †

q1?,QS
†

1

+ C̃1V
tcol

q1?,QV
soft

q1?,QH(Q)Vsoft †

q1?,QV
tcol †

q1?,QC̃
†

1
. (3.29)

Using the commutation relations from Section 3.1, we can move the collinear operators in
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Q

Figure 3. Illustrating hard-leg factorisation. Red dashed lines represent the emission of soft gluons
and collinear emissions are represented by blue dotted lines. Circles indicate the hard scale from
which subsequent evolution proceeds. Loops (Sudakov factors) have been neglected to avoid clutter.

hM(Q)|

(a) A term contributing to the right

evolution (B3

6).

hM(Q)|

(b) A term contributing to the right

evolution (Asoft

9 ).

Figure 4. The right evolution (the evolution of the conjugate amplitude) of a hard process after
9 emissions. Red dashed lines represent the emission of soft gluons and collinear emissions are
represented by blue dotted lines. Loops (Sudakov factors) have been neglected to avoid clutter.

we will use variant B whenever an operator needs to be given an explicit definition9. Let

us begin by simply stating the result:

⌃(µ) =

Z X

n

 
nY

i=1

d⇧i

!
nX

m=0

n�mX

p=0

Tr
⇣
Col†m(µ) �Colm(µ)Bp

n�m�p(µ)
⌘
. (3.1)

Figure 3 illustrates what is going on diagrammatically (it shows a contribution with n = 8,

m = 5 and p = 1). The collinear evolution operators for hard legs, which provide an

operator description of a jet function, are constructed iteratively according to

Col0(q?) = Vcol

q?,Q,

Colm(q?) = Vcol

q?,qm?CmColm�1(qm?)⇥(q?  qm?),
(3.2)

9In the case of variant A, for the most part, all that must be done is exchange Pij and P�i�j with the

overlined versions Pij and P�i�j .
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Identify and subtract collinear singularities in soft evolution

ordering for soft evolution

ordering for 
collinear evolution

softness

[Forshaw, Holguin, Plätzer – JHEP 1908 (2019) 145]

call

set

Using PS methods for analytic resummation

Inclusion of Glauber phases in differential code!

Amplitude-evolution splits into separate soft and collinear showers - like in factorization.13 / 17



Progress on computational aspects

Warning: Experiments will only use better calculation if computationally
feasible – basically, better theory should also be faster and more stable
to replace older methods.

◦ prototyping: often just focus on physics.
weighted generation algorithms overcame
many theory bottlenecks (negative kernels
or “cross sections”…)
…at the expense of convergence.

→ new/improved event generation
algorithms crucial to support precision
program in the future!

Resampling

[Olsson, Plätzer, Sjödahl — arXiv:1912.02436]

Resampling algorithms solve this issue, though 
strict event generator interpretation lost.
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Progress on algorithmic aspects
MC@NLO-∆ (I)

I Main reasoning behind MC@NLO-∆: suppress R − KPS at small pT .

pT

S events

H events: KPS >~ R

H events: KPS ~ 0

Before showering (unphysical)

fixed NLO

=⇒

pT

S events for MC@NLO(!)

Before showering (unphysical)

fixed NLO

H events for MC@NLO(!)

I Suppression factor 0 ≤ ∆ ≤ 1, with support in the n + 1-body phase.

I ∆ designed not to spoil any of the MC@NLO accuracy properties.

I ∆ constructed with sole PS information, can be used to enrich the NLO – PS cross talk.

Paolo Torrielli On the reduction of negative weights in MC@NLO 10 / 22
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ongoing discussion:

◦ define the efficiency criterion for code
◦ deployment
◦ assess if new algorithms should be “open
◦ source” (nb:personal bias)
◦ new negotiations of factorization into
◦ fixed-order and all-order.

The challenge: numbers

Say we take λ = αsL = 0.5

αs L L + δL

0.04 12.5 32.5
0.02 25 45
0.01 50 70

0.005 100 120

αs � 1 ⇒ L� 1

Extra room to resolve emissions:
⇒ Shower cut should be smaller
⇒ extra

√
ε (δL = log(1/ε))

Challenge 1:

Deal with numbers over large numerical range ⇒ precision impaired

Challenge 2:

g1(αsL)L� 1 ⇒ Σ(λ, αs)� 1
⇒ no events with standard “unweighted” techniques

(e.g. λ = 0.5, αs = 0.005 ⇒ Σy23 (L) ∼ 10−29)

Gregory Soyez (PanScales) αs → 0: easier said than done July 3 2020, CERN 3 / 8

Rethinking code factorization reduces neg. weights.

Changes in veto algorithms yield massive gains.

True computing problem: special arithmetic for large numbers important.15 / 17



Uncontroversial summary

◦ Precision MCs are a staple of LHC physics.
◦ NLO+PS is a a solved1 problem, and is undergoing computational

consolidation.
◦ NNLO+PS has reached sophistication – but fully differential solutions

are still missing.
◦ Showers have become a tool for high-precision resummation, both

within PS and as helpers for analytic methods.
◦ With the current efforts, estimate that higher-log or higher-order

parton showers will be the norm in ∼ 5 years.
◦ Monte-Carlo development has shed the reputation of “engineering”

or “plumming”.
◦ We hope for more opportunities like the “Taming the accuracy of

event generators” workshop

1 sweeping statements should be scrutizined extra carefully.
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https://indico.cern.ch/event/876082/
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Provocative conclusion

◦ We cannot “do HEP” without MCs.

◦ We cannot “do LHC” without precision MCs.

◦ We cannot plan new machines w/o bleeding-edge precision MCs.

◦ We cannot do Snowmass projections with 10-year-old MCs.
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